Basics of Sample Acquisition and Analysis

Outline

In this module, we will discuss:

Basics of mass cytometry signal processing and how it is impacted by sample quality and delivery.

Best practices

- Sample preparation
- Instrument QC
- Sample acquisition

Gating basics

Mass cytometry acquisition

From cell to ion cloud

Ion cloud analysis

Each ion cloud is sampled as 13 μsec pushes. All ions within each push are measured.

The number and mass of the ions in each push are measured after being separated in the TOF chamber.

Event duration equals signal duration

- Event duration is the period of time, measured in pushes, that the total ion signal intensity is above the threshold.
- Any events outside the range of 10 to 150 pushes are excluded from conversion to the FCS file data set.

Cell ID: Maxpar[®] intercalator-Ir product

- A cationic nucleic acid intercalator containing natural abundance Iridium: <sup>~37% ¹⁹¹Ir and <sup>~63% ¹⁹³Ir.
 </sup></sup>
- Incubate cells with ^{191/193}Ir diluted in Maxpar Fix and Perm Buffer after antibody staining.
- All cells or particles containing DNA/RNA will bind at least some Ir intercalator.

Cell events are positive for ^{191/193}Ir

Metals + Markers

Which pushes are considered events for FCS file creation?

metals + markers

Ornatsky et al., J Immunol Methods 361, 1 (2010)

- The signal duration of 10-150 pushes determines an *event*.
- During analysis, further gating is performed to identify singlet cells based on nucleic acid signal and other markers of interest, such as CD45.

Properly diluted cell sample with little debris

Metals + Markers

	131	IXe I	133Cs	138Ba 1400	Ce_EQ1 # 2Ce_	EQ167Sm_(CD 26 1Eu_	EQ253Eu_	_EQ 25 4Sm	_CD 45 0Go	L_CD 16 0D	y_CD 14 5H	o_CD1668E	Er_CD8170E	Er_CD3174Y	rb_CD475L	u_EQ41976Lu_ I	_EQ4b190B	CKG 191	r_NA1 193	8lr_NA2 19	4Pt_cis119)5Pt_cis2	196Pt	208РЬ	
0-			•	ŧ			-	<u>.</u>	ļ	- •			Ť				L			ŧ	ŧ	ļ	Ī	1		
		-								- -	-	-	-			-				i.	ł	-	=	Ŧ		
100 —		-				-				•	Ē	-	-		•	₽ -				ŧ	Ē	ţ	ŧ	ī		
200_				•		٠		-	. •	•	-	-	-	-	-	-				ŧ	·		ŧ	₽ I	=	
200 -	-	-								- - -	-	-	-	-	-	=				=	-					
300 —										-	-	-	-								-	-				
		-		•	-	-		-		- -	•	•	-			-				- •	ŧ	ļ	٠	÷	:	

High particle concentration causes ion cloud fusion

Impact of cell concentration on data quality

Experiment: PBMC sample, serially diluted. Acquisition time held constant.

high 193Ir (NA content) gate is more likely to contain cell clumps.

Take home Message: Run your sample below 500 events/sec

Impact of debris on data quality

Doublet determination

intense cloud

Larger event length value (signal duration in 13 µsec "push" increments)

Controlling metal contamination

Source	Remedy								
Glassware (Lead- ²⁰⁸ Pb)	• Use plastic containers to soak parts, e.g. nebulizer								
	Use plastic for storage of media and reagents								
Detergent used for cleaning (¹³⁸ Ba)	 Rinse all glassware thoroughly with Type 1 ultrapure water (18.2 MΩ) (DIW) 								
PBS (¹³⁸ Ba and ¹³³ Ce)	 Use Ca⁺⁺/Mg⁺⁺ free reagents: these will also be low for ¹³⁸Ba and ¹³³Cs 								
Water impurities	 Use only DIW for reagent preparation and cleaning of Helios[®] parts 								
Residual sample/debris in instrument	Keep sample lines and nebulizer clean								
Xenon (¹³¹ Xe)	 A contaminate in argon gas; monitor level in Background Template to identify a dirty tank (call gas provider) 								
Pipettes used with metal labels	 Clean pipettes with lab wipes and 70% ethanol after each use 								
Tin (¹²⁰ Sn)	• Environmental, Igniter pin – clean with isopropanol								
Worn out O-ring or some latex gloves (¹²⁷ I)	Change the brown sampler o-ring during maintenance, test the latex gloves before use.								

Sample preparation: quality and concentration are key

Obtaining a single cell suspension:

- Sample preparation is critical: as free of debris and clumps as possible.
- Use a viability indicator such as ¹⁰³Rh or cisplatin (¹⁹⁵Pt).
- Filter using 35 μm cell strainers immediately prior to loading on the Helios

Cell Concentration:

- Staining: $< 3x10^6$ per 100 µL staining volume (1 test)
- For injection (500 cells/sec target sampling rate is suggested, Don't be higher than 750 cells/sec)
 - 1x10⁶ /ml (0.030 ml/min introduction rate)

Best practices: instrument QC

Monitor Background

- Create template.
- Use data from install as a baseline reference.
- Collect data daily and check for changes especially after changing argon or water sources.

Daily Tuning

Keep Records

- QC log
- Screenshots of QC report

Basic gating strategy: Ir signal vs. event length

Beads: doublets are obvious

Basic gating strategy: viability

Data comparison to flow cytometry

Fixed PBMCs from donor labeled with 7 surface antigens: CD3, CD4, CD8, CD45RA, CD56, CD20, CD33

* Pearson's correlation r = 0.99, p<10⁻⁶ (2-tailed t-test) for population frequencies

Simplify the complex quest to understand and apply biology.