

PeakView软件手动鉴定化合物结构式

张海燕 zhy2009@ustc.edu.cn 中国科学技术大学生命科学实验中心 http://biotech.ustc.edu.cn 2024.01

打开一个数据

3、Show-formula finder

- 岱 墨 企 キャッ% 范: 🛦 👄 - | 🗲 🔫 (光 | 🏛 🔍 🖃 🗐 🏟

Spectrum from GLU+GSH_NEG_CE20.wiff (sample 1) - GLU+GSH_NEG_CE20, Experiment 3, -TOF MS^2 (70 - 400) from 8.374 min

拟合结果

点击红色图标,可在一级质谱上标记选中的fomula及error

注意:我们一般会用Masterview去提差异峰,据已有经验判断,masterview即便能拟合出分子式,分子式的可信度也是 很差的,因此推荐大家找到感兴趣的差异峰后,用Peakview 拟合出来的分子式。

可能碰到的问题:拟合无结果

oun	d elemental	compositio	ns			Find Any	/	Find	MS Details MSM	IS Details Comp	ound De	tails
Hit	Formula	m/z	RDB	ppm	MS Rank	MSMS ppm	MSMS Rank	Found	Isotope cluster	details	Charg	ge -1
	<u></u>								Elements from	C100H80N200	10	Vacto
									Mass tolerance	iss tolerance (ppm)		
									Intensity tolerance (%)		30	
									#C/#heteroato	ms greater than	0	

2

匹配拟合分子式的理论和实测二级

1、二级谱图的碎片的精确质量数匹配

- 操作步骤:
- 1) 按住方框内谱图图标,拖到二级质谱图上
- 2) 点击find
- 点击MSMS Details 3)

二级碎片精确质量数匹配结果显示

注意:该步的匹配,只是在右侧给定候选的化合物分子中选 定的那个分子组成范围内,对仪器实测的二级谱图碎片的精 确质量数做匹配,不含有拟定化合物的分子结构信息。绿色 代表拟合出来的碎片分子量和实测的误差在允许范围内,黄 色代表偏差较大,灰色代表未拟合出来。

二级谱图的碎片的结构信息匹配(已有预测结构式的前提下 2、 执行该步骤) Ц

| 🚰 🄽 🚣 🛧 × % 🖾 🛦 👄 + | ← 🔫 🥐 | 🎘 | 🏛 🔍 🚍 🚍 📾

🗺 🖻 🔟 II 🦉 🏭 🏛 🔍 🚍 🚍 🗰

🖀 🏧 🚣 🛧 - % 距 🛦 🚥 - | 🖛 🔫 🥀 | 次 | | 🏛 🔍 🚍 🚍 📾

Spectrum from GLU+GSH_NEG_CE20.wiff (sample 1) - GLU+GSH_NEG_CE20, Experiment 3, -TOF MS^2 (70 - 400) from 8.374 min Precursor: 306.4 Da

CH 🔺 🍡 🙀 🌗 4/9/2020

₫щ

₫Щ

dan

+

2) show-fragement pane

匹配结果查看—评分查看

点击进行峰匹配

🗷 🖂 🛄 🗎 🏛 🖳 📾 📾				
Fragments Peaks				
Mass/Charge	Intensity (%)	Assigned	Error (ppm)	Radical
74.0244	22.65		4.8	
86.0244	16.14		4.1	
87.0561	7.71		3.0	
99.0559	26.59		5.3	
101.0720	5.97		0.2	
112.0402	7.07		2.2	
127.0511	10.25		1.4	
128.0345	80.37		6.5	
135.0565	6.49			
141.0669	15.74		0.1	
143.0456	100.00		4.0	
	11 00		00	[200]
Matches: 28 of 37 peaks, 90.4% of total intensity				

匹配分值查看

注意:该步的匹配,是用软件计算的理论二级碎片和实际测到的二级谱图进行匹配,改变化合物断裂规律设置,可改变理论二级碎片的组成和丰度。

可调整参数--化合物断裂规律参数

Fragments Peaks							
m/z	Δ	Num H	Broken Bonds	Bonu Closure			
228.0990		0	2				
228.0990		3	3				
242.0782		0	2				
242.0782		0	2				
242.0782		-3	3				
254.0782		-2	2				
254.0782		-2	2				
272.0888		-1	1				
288.0660		-1	1				
288.0660		-1	1				
306.0765		0	0				

Fragment Options	1
Fragmentation	
✓ Only break single bonds	
✓ Break ring bonds	
Maximum number of bonds to break:	
Maximum number of C-C bonds to break:	
\checkmark Also break C-C bond if either carbon is bonded to a hetero atom	. Composition
Allow one bond closure (double bond formation)	
Include brute force rearrangements	L
Allow radicals	L
Peak List	
Mass tolerance: 20.0 ppm -	
✓ Constrain using peak list	
Require evidence for previous step when breaking bond	
Display	.S-
Do not show fragments with m/z less than 40.0 Da	.S-
Automatically recalculate on the fly	.5.
OK Cancel	

可通过调整这些参数,改变化合物断裂规律,从而改变理论二级碎片。

匹配结果查看--碎片断裂情况查看

A Line of the

匹配结果查看--谱图匹配信息查看

IDA Survey from GLU-GSH_NEG_CE20.wff (sample 1)-GLU-GSH_NEG_CE20 | Spectrum from GLU-GSH_NEG_CE20...F MS (70 - 650) from 8.327 min | Formula Finder | Structure: GSH | Fragmentation | Spectrum from GLU-GSH_NEG_CE20...MS '2 (70 - 400) from 8.330 min 岱 薬 쇼 + • % 返 쇼 👄 - ! 🔩 🔩 🥂 💢 ! 🗇 🔍 🖃 📰 🗰 Operative from GLU+GSH_NEG_CE20.wiff (sample 1) - GLU+GSH_NEG_CE20, Experiment 3, -TOF MS² (70 - 400) from 8.330 min Precursor: 306.1 Da O Theoretical Fragments 100% -129.0432 95% 匹配理论和实测碎片 90% 85% -144.0543 33.9876 80% 75% 70% 272.0883 65% -112.0818 60% Q 🔜 🔜 📾 🍻 ec 🖂 🛄 窳 isity (of 8.1e4) -62.0006 55% Fragments Peaks 50% -93.0430 Num Broken Bond Rad. m/z Rearr. E н Bonds Closure 45% 228 0990 0 4.3 2 40% -95.0550 228.0990 3 3 4.3 242.0782 0 2 2.9 35% 242.0782 2 2.9 0 30% 242.0782 -3 3 V 2.9 -173.0329 -126.0431 25% -198.0644-2 2 254.0782 0.8 254.0782 -2 2 0.8 -119.0218 20% -131.0219 -186.0644 -87.0320 -75.0319 1.8 -105.9901 15% 288.0660 -1 1 1.1 -145.0377 -87.9791 10% -185.0327 -73.9997 288.0660 -1 1 1.1 -160.0487 -137.0323 -43.9880 306.0765 0 0.4 5% 0% Num. fragments: 84 100 110 120 130 150 160 170 180 190 210 220 23(80 90 140 200

注意事项

有些开源库,比如Pubchem,HMDB,Massbank等 会收录化合物的实测二级谱图,虽然二级谱图会受到 不同检测设备、碰撞能量的影响,但也具有一定的参 考意义,也是二级匹配判定的一种方式。不管怎么说 ,定性的金标准是确定候选物后,用标准品在本地再 次和样本进行验证。

数据分析物质确认是一个繁琐耗时的过程,祝大家都能找到自己感兴趣的靶标。